
JOURNAL OF COMPUTATIONAL PHYSICS 84, 57-75 (1989) 

Development of the Mask Method for 
Incompressible Unsteady Flows 

M. BRISCOLINI AND P. SANTANGELO 

IBM ECSEC, European Center for Scientific and Engineering Computing, 
Via Giorgione 159, I-00147 Rome, Italy 

Received November 30, 1987; revised July 22, 1988 

A new method is developed to solve 2-dimensional time dependent incompressible viscous 
flows in an arbitrary geometry. The Navier-Stokes equations are solved in primitive variables 
using a pseudospectral formulation. The geometry is introduced by directly forcing the 
velocity field near the boundaries. The method extends a similar computational technique 
introduced by Basdevant and Sadourny [ 11. Some examples are shown to evaluate its 
efliciency and accuracy. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

Spectral methods have been usefully introduced to simulate homogeneous and 
isotropic incompressible flows at high Reynolds numbers [2]. They are more 
accurate and more efficient than finite difference and finite element methods since 
they do not introduce truncation errors in spatial derivatives and give an exponen- 
tial convergence for infinitely differentiable periodic functions. These methods can 
be easily applied to simple geometries when it is possible to use the FFT algorithm; 
their use in more complex geometries is generally forbidden by the lack of 
knowledge of the eigenfunctions of the Laplacian and of a corresponding fast algo- 
rithm to expand a given function in series. For example, Chebyshev polynomials 
[3] can be used to solve the flow in a channel [4]. 

This paper proposes a method in which an arbitrary computational domain C is 
embedded into a larger rectangular one (see Fig. 1) where the set of the eigenfunc- 
tions is chosen for simplicity to be the Fourier base. The method treats the no-slip 
condition of the Navier-Stokes equations as a forcing term acting, at each time 
step, on the physical boundary K; the forcing depends on the velocity field. This 
method appears to be as precise as the spectral one everywhere except near the 
boundaries where the accuracy is reduced to the finite difference level. The original 
idea of this method has been introduced by Basdevant and Sadourny [ 11; here we 
discuss a new version of the method. 

Some simulations of external and internal flows in different geometries will 
demonstrate the efficiency and accuracy of the method; Section 2 describes the 
mathematical and numerical model; Section 3 shows the practical strategy of enfor- 
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FIG. 1. The physical domain C is imbedded into the integration domain B. 

cement of the boundary conditions; Section 4 contains the results of the simulation 
for the 2D driven-cavity and for the impulsively started flow around a cylinder at 
various Reynolds numbers. 

2. MATHEMATICAL AND NUMERICAL MODEL 

The Navier-Stokes equations in primitive variables, for an incompressible flow 
with constant density p = 1, are 

a,u+(U~v)u+Vp=vdu+f, (1) 

with the incompressibility equation 

v.u=o, (2) 

where u(x, t) and p(x, t) are the velocity field and the pressure respectively; v is the 
viscosity and f(u, x, t) is the forcing term induced by the physical boundary X and 
by any other external forcing. 

The numerical integration proceeds according to the following three steps: 

(a) free evolution of the velocity field inside the rectangular domain B 
neglecting forcing and pressure, 

(b) introduction of the forcing term due to the boundary conditions on X, 

(c) removal of the pressure by imposing the incompressibility of the field. 

It is reasonable that this procedure gives a divergence-free field while satisfying 
exactly the boundary conditions as the time step and the mesh size approach zero. 

The numerical spectral method used here is an explicit in time leap-frog scheme 
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with exact resolution of the diffusive term. This is applied to Eq. (1) truncated to 
the maximum wavenumber K 

U 
*n+1= 

e 
-vk22Ar*n-I 

U +2Ate- vk2 “(fi + ?- ikfi)n, (3) 

where the hat labels the Fourier components and the superscripts refer to time 
t, = n At. H is the non-linear pseudospectral term [2]; in two dimensions, H is 
calculated efficiently with the fourth formulation proposed by Basdevant [5] which 
requires four FFTs instead of the five FFTs of the standard expression; II is the 
total pressure. Equation (3) is integrated with a fractional-step time-advancing 
scheme [6, 73. Step (a) gives the solution of the momentum equation: 

i, = e -vk22At*n- 1 
U + 2At eeyk2 ‘*fin. (4) 

In step (b) the field i, is forced to obey the boundary conditions using the linear 
operator I? 

46 = hi,. (5) 

Valid expressions for p will be specified in detail in Section 3. To work correctly 
the operator P must be a projector, at least in its continuous representation (i.e., 
when the mesh size approaches zero). In this respect (5) is equivalent to the 
formulation introduced by Basdevant and Sadourny [l]. In step (c) the 
incompressibility of the field is imposed removing the gradient of a scalar field C$ 
from ub as: 

where d is expressed by 

U *“+‘=&,-iiAtk& (6) 

The three-step procedure indicated so far allows also for the explicit determination 
of the forcing and the pressure terms, respectively. This is given by substituting (4) 
in (5) and successively (5) in (6) using P = 1 - M. Expanding the exponential terms 
to first order and comparing with (3) one finally obtains the forcing term 

I”= -$(l+vk”dt), 

and the pressure 

6” N & 1 + vk2 At). (9) 

The order of approximation in (8) and (9) is o(vk’ At); this corresponds to a 
numerical boundary layer of thickness 6 N (v At)“’ (see Orszag et al. [8] for an 
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extensive discussion). This layer is very dangerous for implicit in time finite 
difference schemes which use a large dt [9], while it does not affect significantly 
our scheme which is explicit in time and thus requires a small time step [lo]. 

3. TREATMENT OF THE BOUNDARY CONDITIONS 

The practical method of forcing the boundary conditions in Eq. (5) is a key point 
of this work. This problem is an important one because the very use of an eigen- 
function expansion imposes some constraints on the type of forcing which is 
necessary to model the boundary conditions. In fact, given a sufficiently regular 
velocity field, if one tries to set at will the value of the velocity on some collocation 
points (say on the boundary), then the corresponding Fourier analysis shows 
strong oscillations near those points. These oscillations are known as the Gibbs’ 
phenomenon and have the unfortunate property that they do not vanish even when 
the mesh size goes to zero [ 111. 

An efficient method to remove the unwanted and dangerous Gibbs’ oscillations 
uses a procedure that spreads the boundary line into the narrow strip whose thick- 
ness is a few grid points. The broadened boundary line avoids the sharp setting of 
the values on the boundary, which is responsible for the oscillations. Indeed, one 
can thus exploit the new degree of freedom, locally perpendicular to the boundary, 
to decrease the forcing of the velocity field as one gets farther from the boundary 
line. The oscillations decrease in amplitude when the thickness of a strip increases. 
There are now two conflicting requirements because one needs both a thick strip to 
avoid large Gibbs’ oscillations and simultaneously a thin one to maintain the 
boundary strip as localized as possible. It is shown in the following that these 
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FIG. 2. Maximum value of Gibbs’ oscillations for the error integral erf(x/o) versus a; note the sharp 
decrease of the Gibbs’ phenomenon when (r is of the order of a few meshes. 
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requirements can both be met with a strip whose thickness is only 2-3 grid points. 
The use of a narrow strip in place of a thin boundary line has the further advantage 
of avoiding the necessity of having the boundary pass exactly through the collocation 
points. 

To increase confidence in the proposed method two simple cases are shown 
where a function with a discontinuity is analyzed in Fourier series; in these cases 
the strength of the Gibbs’ phenomenon is substantially reduced at the minor cost 
of a negligible smoothing of the original function. 

In the first case one uses the step function whose Fourier analysis shows the 
Gibbs’ phenomenon by definition; this simple discontinuous function is the limiting 
case of the error integral when the rms d + 0. Figure 2 reports the maximum value 
of the Gibbs’ phenomenon versus the r~ of the error integral; one sees that for very 
low values of r~ one retrieves the Gibbs’ phenomenon while a small rr N 2Ax is 
sufficient to damp the amplitude of the oscillations by more than two orders of 
magnitude. 

The second case is a more theoretical way of looking at the same procedure; this 
is given by the well known method of Lanczos’ sigma factors which is often used 
to improve the convergence of slowly converging Fourier series [ 111. The method 
consists in multiplying a given slowly converging series by Lanczos’ series and can 
be shown to correspond to a line scale smoothing of the non-transformed function 
[ 111. For the simple step function, whose Fourier series slowly converges at order 
o(N-‘), Lanczos’ sigma factors improve the convergence up to o(W*) [12]. 
Furthermore, the simple example of the step function can be used to show that 
Lanczos’ method gives a finite difference accuracy for the evaluation of the 
derivatives [12] near the point of maximum steepness while it maintains the 
spectral accuracy elsewhere. In both cases one sees immediately the similarity with 
our method which is essentially a smooth way of enforcing the boundary 
conditions. 

Two different practical strategies of implementation of the operator P for a 
no-slip boundary are shown in the following. 

First Forcing Method 

Let us define a function M,,(x, y) (nr = narrow mask) which is zero inside the 
given flow domain C and is one elsewhere with a smooth connection of the two 
values; Fig. 3 is an example of such a function for an impenetrable disk inside a rec- 

FIG. 3. The narrw musk M,, for an impenetrable disk. 
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tangular domain. In this case the projection operator P is the simple multiplicative 
function 

P= 1 -IV,,; (10) 

the operation shown in (5) is a convolution in Fourier space and is performed 
conveniently with a multiplication in the non-transformed space at the minor cost 
of some additional FFTs. 

A similarly working definition of M,, is zero inside the given flow domain C and 
is peaked to one only near the boundary with a smooth connection between the 
two values. At variance with the previous definition of M,, (which is one outside C) 
the flow could now show the development of a spurious fluid movement outside the 
computational domain. 

Some tests have shown that a gaussian shaped function with rms CJ,, is an 
economic and reasonable choice for the shape of M,, near the boundaries. It is 
interesting to analyze the effects of this type of forcing; to this end, and for the sake 
of simplicity, we write explicitly the unidimensional version of (5) in the non- 
transformed space; the formula is: UJX) = (1 - M,,(x)) U,(X). One recognizes 
immediately that, for any M,,(x), which is flat near the boundary, not only the 
velocity ub but also its spatial derivative tend to zero near the boundary itself. The 
same applies in two dimensions and this is rather unfortunate because the value of 
the velocity derivatives at a no-slip wall are generally different from zero. 

Second Forcing Method 

A second form of the operator P forces only the velocity while leaving almost 
untouched the velocity derivatives; this is important near the no-slip wall if one 
wants to solve in some detail the boundary layer. In this case P is given by the two 
formulae 

ii = M,y,, (11) 

and 

&,=u,-MMbr@Q, (12) 

where the symbol @ indicates the spatial convolution with a second gaussian mask 
M,, (br = broad mask) given by 

Mdx, y)=&e -(x2 + Y*)wak, 
br 

(13) 

where Gbr is somewhat (generally two times) larger than Q,,. The convolution is 
directly computed with a product in Fourier space. The analysis of the effect of this 
second type of forcing is now performed again in the unidimensional case for 
simplicity; it gives: dub/dx = du,/dx + o(dx). Hence the velocity derivatives of ub on 
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the boundary are no longer zero. Experimentation with different values of the 
parameters o’nr and obr has shown that the smallest values which give almost no 
oscillations are 0 nr = 0.5 and (T,,~ = 1 when measured in units of grid points. 

The key parameter of the second forcing method is cbr which rules the strength 
of Gibbs’ phenomenon (as in Lanczos’ method) while cnr (the width of the 
boundary strip) is only used to allow for the case of a boundary line which does 
not pass exactly through the grid points. 

A comparison between the two types of forcings is clearly shown in Figs. 4 and 

FIG. 4. Velocity profile around a circular cylinder in a uniform flow at Re = 20 with the first forcing 
(a) and for the second forcing (b). 

581/84/l-5 
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favors the second method since it does not force to zero the velocity derivatives on 
the wall. Only the second forcing method will be used throughout the rest of the 
paper. 

This practical strategy of enforcement of the boundary conditions is easily 
extendible to the case of a non-zero velocity on the boundary; to this end formula 
( 11) is replaced by 

ii = M,,(U, -V), (14) 

where the field V is the assigned boundary velocity. A proper operation of the 
algorithm requires that the value of V on the boundary is nearly constant over 
length scales larger than crnr. 

It seems that an important disadvantage of the mask method is the necessity to 
pay off a large number of grid points over the whole computational domain in 
order to resolve sufficiently well the boundary zone; this is true for stationary flows 
where the fluid patterns are simple. The situation is completely different for non- 
stationary flows whose motion is almost unpredictable and thus require a line 
meshing everywhere. In this case the uniformity of the meshing of our mask method 
is no more a serious problem but rather combines well with the highly regular 
memory structure of the present supercomputers so that a clear trade-off can be 
easily recognized in favor of the mask method which furthermore offers the 
possibility to change arbitrarily the boundary conditions. In particular, the com- 
plete mask method (comprising field evolution and enforcement of the boundary 
conditions) is fully vectorizable and parallelizable and can be exploited both in two 
and three dimensions on present virtual memory machines. All the computations 
shown in this paper have been performed on an IBM 3090 vector multiprocessor 
with a fully parallel in core code. 

4. RESULTS AND DISCUSSION 

The present section contains the results of some simulations of 2-dimensional 
flows using the second forcing method. Two cases have been selected: the flow in 
a square cavity driven by a moving wall and the flow past a circular cylinder 
embedded in a uniform flow. The former is an example of a recirculating internal 
flow with strong discontinuities while the latter is an example of an external 
separated flow over a bluff body. 

20 Driven-Cavity Flow 

The driven-cavity test is often used to check numerical methods for incom- 
pressible fluid flows [ 13, 14,9]. In this example the recirculation region is induced 
by the moving wall and diffuses inside the cavity. The test has been selected because 
the flow pattern depends sensitively on the Reynolds number, as has been clearly 
shown by Ghia et al. [ 141 who use a multigrid method to solve the flow. 
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The geometry of the mask for the cavity flow is as follows: with reference to 
Fig. 1 the cavity with side L is the physical domain which is centered in a larger 
computational square with side L, = 1.28L. The mask field M,, is peaked on the 
four sides of the cavity and is zero elsewhere; the field V is non-zero only on the 
upper side and its value is U. The Reynolds number of this flow is Re = UL/v. Two 
flows with Re = 100 and Re =400 are computed with a 128 x 128 grid; this 
corresponds to 100 x 100 grid points for the cavity. (Since the broad mask has a 

b 

FIG. 5. Vorticity field in a driven-cavity; the computational grid is 100x 100 and the Reynolds 
number is 100 in (a) and 400 in (b). The vorticity levels are: f0.5, + 1, +2, +3 (continuous lines), 
-0.5, -1, -2, -3, -4, -5 (dotted lines), and 0 (dashed line) [14]. 
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FIG. 6. Horizontal velocity profile along the median vertical line at Re = 100 and Re =400. 
Comparison between present results (lines) and Ghia et ~1,‘s [ 141 results (symbols). 

gaussian shape, the largest cavity that could be computed has side L N L, - 60,~). 
The time step is selected according to the two linear stability criteria 
At v/Ax2 co.25 and At/Ax UC 1: At = 10e3 meets them both. 

The flow in the cavity is shown in Fig. 5a at T = 20 for Re = 100 and in Fig. 5b 
at T = 50 for Re = 400 when both flows appear to be completely developed; the flow 
patterns compare remarkably well with the results of Ghia et al. [ 141 who use a 
129 x 129 grid for their multigrid computations; minor differences of the vorticity 
patterns appear only near the lower corners. 

The vertical and horizontal velocity profile through the cavity center are shown 
in Figs. 6 and 7, respectively, where they are checked against published results 

0 

FIG. 7. The same as in Fig. 6 but for the vertical velocity profile along the median horizontal line. 
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[14]; the comparison is qualitatively good near the moving wall. A small difficulty 
is shown by the case with Re =400 near the center of the lower wall where the 
value of the vorticity is smaller than the expected one [14]; this is probably due 
to insufficient resolution. 

Impulsively Started Flows around Cylinders 

Laminar flows. The flow past a circular cylinder has been chosen to verify the 
ability of the mask method to solve viscous flows in contact with a curved wall. 
This flow presents a recirculation region behind the body (the wake) that increases 
with the Reynolds number (stable laminar regime) up to the critical value Re, - 70 
[15]; when Re- Re, the flow starts to show an oscillating wake while a Karman 
vortex street with a strong separation appears for Re $ Re, (turbulent regime). 

The flow is integrated in the whole domain without any symmetry enforcement 
and with periodic boundary conditions in the vertical direction; this is obtained 
using a mask M,, which is peaked on the wall of the cylinder. The Reynolds 
number is Re = 2UR/v, where R is the radius of the circular cylinder and U is the 
uniform incoming velocity. The sides of the rectangular domain are L, = 16R and 
L,= 8R, the grid is 256 x 128, and the time step is At = 2.5 x 10-3. Case B at 
Re = 40 (see the Table I) is different: L, = L, = 16R and the grid is 256 x 256. The 
center of the cylinder is 12 radii far from the right outflow side; this is sufficient to 
ensure a negligible perturbation of the boundary on the wake for Reynolds 
numbers up to 70 when the length of the wake is of order 8R [16]. The left and 
right vertical sides are treated as boundary segments with the assigned velocity 
V = (U, 0) and the corresponding masks M,, and V are set accordingly: this proce- 
dure is able to destroy the vorticity patterns exiting from the computational domain 
and ensure a uniform inflow (see Figs. 8 and 10). No conditions are imposed on the 
lower and upper sides of the domain and the computation is fully periodic along 
the vertical direction. 

The flow has been computed for different Reynolds numbers in the range 
2GlOOO; Figs. 8 show the vorticity fields for these computations at time T= 16. The 

TABLE I 

Re co P(Z) -P(O) @ L/2R 

20. 

40. 

40 B 
60. 

80. 
100. 
200. 

500. 

2.19 1.27 1.27 40. 0.90 

1.93 1.13 0.9 1 51. 2.19 
1.74 1.08 0.80 51. 2.19 
1.61 1.09 0.80 57. 2.96 

1.44 1.08 0.73 59. 3.41* 
1.33 1.07 0.68 65. 3.90’ 
1.10 1.07 0.55 80. 

0.90 1.07 0.25 88. 
0.82 1.06 0.06 86. - 

Note. Starred values are measured at T= 80. 
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FIG. 8. Vorticity field for an impulsively started flow around a circular cylinder using a 
256x 128grid. The vorticity values are +5, +2, fl, +OS, f0.25 (continuous lines), -5, -2, -1, 

-0.5, -0.25 (dotted lines), and 0 (dot-dashed line). Time is T= 16 and the Reynolds number is (a) 
Re = 20; (b) Re = 40; (c) Re = 60; (d) Re = 80, (e) Re = 100, (f) Re = 200; (g) Re = 500, (h) Re = IWO. 
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pictures show clearly that the mask of the cylinder does not perturb appreciably the 
flow near the obstacle. The vorticity does not attain its maximum value on the wall 
of the cylinder but only at the effective radius that is found experimentally as R,,= 
R + 3a,,. Note, however, that this is only 1.5 grid points outside the cylinder for 
our choice of crnr = AX/~. Figs. 9a and b show the vorticity and pressure field at Rem: 
it is apparent that the maximum value of vorticity decreases excessively at high 
Reynolds number as an effect of the low space resolution near the cylinder. 

0.80 
1 

-0.20, I 
180 210 240 270 300 330 360 

a Theta 

-1 .oo , 

180 210 240 270 300 330 360 
b Theta 

FIG. 9. Vorticity field at effective radius R,, as a function of the angle from leading edge of the flow; 
the time is T= 16 and the Reynolds number is 200 (continuous line), 500 (dotted line), and 1000 
(dot-dashed line). The same in (b) but for the pressure. 
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Table I reports some relevant quantities of the flows. These are: (a) the drag 
coefficient 

(15) 

where o is the vorticity and the integration is performed on the surface of the 
cylinder (8, is the normal derivative on the wall); (b) the stagnation pressure 

(16) 

where the integral is performed on the axis line from the inflow edge x = 0 to the 
stagnation point x,; (c) the pressure behind the body p(O); (d) the separation angle 
@p; and (e) the wake length L,/2R in units of the diameter of the cylinder. 

The values in the table are calculated at T= 16; this is appropriate for flows with 
Re < 60 that reach a steady configuration by that time with a wake that tits well 
within the integration domain. In the case of flows with larger Reynolds numbers 
the wake should extend beyond the outflow boundary and time T= 16 is a 
compromise between the opposing needs of an evolving flow and for a negligible 
influence of the outflow boundary on the wake. The values of the table have been 
checked against many numerical computations for the flow past a cylinder in an 
infinite domain [17-201; the main result of the comparison is that the stagnation 
pressure and the separation angle agree with the published data at the 5% level 
while the pressure behind the body is significantly different, probably as a conse- 
quence of the finite extent of our computational domain. The length of the wake is 
accurate as long as the wake remains sufficiently far from the right side of the 
integration region (Re = 40). The value of the drag of simulation B at Re = 40 
is in good agreement with Rosenfeld and Wolfshtein [20] who solve the flow 
for a periodic vertical array of circular cylinders; in the other cases the vertical 
periodicity of our computational domain causes the drag coefficient to be about 
30% different with respect to results obtained by other authors in an infinite 
domain [ 17-193. 

Turbulent jlows. At large Reynolds numbers Re B Re, N 70 the wake is 
destabilized by any small asymmetric perturbation induced by the outflow bound- 
ary. When Re > 500 this effect appears already for T> 20 while for Re = 200 a weak 
instability appears only for much longer times (T> 80). Figures 10 show the 
development of the Karman vortex street for Re = 1000; Figs. 10a and b give the 
early symmetric development of the wake that is perturbed around time T= 50 
(Figs. 1Oc and d) when the wake touches the outflow side and eventually generates 
a Karman vortex street (Figs. 1Oe and f). The last two figures are four time units 
spaced and show two nearly symmetric flow configurations of the oscillating wake. 
These permit to estimate by eye the frequency of the oscillation n N g and conse- 
quently the Strouhal’s number S= n 2R/U N 0.25. The same result is given by a 
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c 

FIG. 10. Evolution of the vorticity field for an impulsively started flow around circular cylinder at 
Re = 1000 using a 256 x 128 grid. 11 vorticity lines are equally spaced in the range - 10 + 10; continuous 
(dotted) lines indicate positive (negative) vorticity; time is (a) T=4; (b) T=28; (c) T=48; (d) T= 56; 
(e) T= 76; (f) T= 80. 

more precise measurement which is based on the harmonica1 analysis of a long time 
record of the velocity field in two points inside the wake. Published estimates of the 
Strouhal’s number give S 2: 0.21 [21,22] and are significantly smaller probably as 
a consequence of the vertical periodicity of the boundary conditions. The flow 
structure near the trailing edge of the cylinder is sufficiently accurate to show such 
important features as the secondary eddies (see Figs. 11); but liner details such as 
the a or the p-phenomena reported by Bouard and Coutanceau [ 163 for Re > 800 
do not appear as a consequence of insuflicient numerical resolution near the wall. 
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Figures lOd, e, and f show clearly that the right absorbing boundary of the 
domain is able to damp the outflow without contaminating the inflow. This is not 
trivial since the flow domain is doubly periodic. 

The slight roughness of the contour lines for the flow past the cylinder shown in 
Figs. 11 is not the consequence of the Gibbs’ phenomenon but rather the result of 
the use of a too small viscosity. This is shown by the fact that the small ripples are 

b 

FIG. 11. An enlargement of the flow at Re = 1000 is shown near the trailing edge of the cylinder at 
time T= 16 (a) and T=80 (b). The vorticity values are +5, f2, + 1, +0.5, +0.25 (continuous lines), 
- 5, -2, - 1, -0.5, -0.25 (dotted lines), and 0 (dot-dashed line). 
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FIG. 12. The same as in Figs. 10 but for an impulsively started flow around a square at Re = 1000; 
time is T= 156 (a) and T= 160 (b). 

b 

FIG. 13. The same as in Fig. 11 but for an impulsively started flow around the square cylinder at 
Re = 1000; time is T= 16 (a) and T= 160 (b). 

73 
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recognizable only in experiments with very high Reynolds number (Re = 1000 in 
Figs. 11) and not in all other cases corresponding to lower Reynolds numbers. 

As a final test for the mask method, the flow past a square cylinder [23] is 
investigated. This is shown in Figs. 12 for Re = 1000. The Strouhal’s number based 
on the harmonica1 analysis of velocity time records is S N 0.21, in agreement with 
the numerical results by Davis and Moore [23]. Figures 13 are enlargements of the 
flow near the rear side of the square. Note the remarkable ability of the mask 
method to deal with the sharp corners of the square. 

5. CONCLUSIONS 

The present paper develops a new computational method for 2-dimensional 
incompressible viscous flows in an arbitrary domain. The complexity of the 
geometry is handled by embedding the flow domain into a basic rectangular one 
and directly forcing the boundary conditions while the computations are performed 
straightforwardly in the rectangular domain using a spectral method. The technique 
is well suited for detached flows and shows a clear trade-off between simplicity and 
approximation. In fact, the method has the high accuracy of spectral ones almost 
everywhere while it is only a little less precise near the boundary where one expects 
a reduction of the accuracy to the finite difference level. The procedure is 
completely vectorizable and parallelizable and can very well exploit the presently 
available supercomputers. The use of the velocity-pressure formulations makes it 
easier to handle the boundary conditions and could be extended even to the 
3-dimensional case. A similar computational technique has been used first by 
Basdevant and Sadourny [ 1 ] with the vorticity formulation of the Navier-Stokes 
equations. Here their method is extended to more difficult problems like the 
2-dimensional driven cavity and a new technique is added to avoid the Gibbs’ 
oscillations connected with the sharp boundary gradients. 
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